Chaotic behavior of a class of discontinuous dynamical systems of fractional-order
نویسندگان
چکیده
In this paper the chaos persistence in a class of discontinuous dynamical systems of fractionalorder is analyzed. To that end, the Initial Value Problem is first transformed, by using the Filippov regularization [1], into a set-valued problem of fractional-order, then by Cellina’s approximate selection theorem [2, 3], the problem is approximated into a single-valued fractional-order problem, which is numerically solved by using a numerical scheme proposed by Diethelm, Ford and Freed [4]. Two typical examples of systems belonging to this class are analyzed and simulated. Kkeyword Fractional derivative; discontinuous dynamical system; Filippov regularization; differential inclusion; numerical method
منابع مشابه
A numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملObserver Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems
This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...
متن کاملModified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption
In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...
متن کاملFractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances
In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...
متن کاملFractional dynamical systems: A fresh view on the local qualitative theorems
The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...
متن کامل